Natural Language Processing as Philology

David Smith
Department of Computer Science
UMass Amherst

FG-Perseus Workshop

NLP Highlights

- Efficient algorithms for linguistic inference
 - Joint inference across many layers of language
- Adaptation to new languages and domains
- Inferring structure in large, noisy collections
 - Detecting text reuse and linkage
 - Inferring temporal sequence of events

Perseus Workshop

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

yes, lots of green ...

Byl jasný studený dubnový den a hodiny odbíjely třináctou

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

jasný ← den
("bright day")

Byl jasný studený dubnový den a hodiny odbíjely třináctou

"It was a bright cold day in April and the clocks were striking thirteen"

DFG-Persedé Workshop

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

jasný ← den ("bright day")

Byl jasný studený dubnový den a hodiny odbíjely třináctou

V A A A N J N V C

"It was a bright cold day in April and the clocks were striking thirteen"

Finding Highest-Scoring Parse

• Convert to context-free grammar (CFG)

• Then use dynamic programming

– CKY algorithm for CFG parsing is O(n³)

– Unfortunately, O(n⁵) in this case

– Solution: Use a different decomposition (Eisner 1996)

• Back to O(n³)

wore

stovepipe

a

each subtree is a linguistic constituent (here a noun phrase)

Finding Highest-Scoring Parse

- · Convert to context-free grammar (CFG)
- Then use dynamic programming
 - CKY algorithm for CFG parsing is O(n³)
 - Unfortunately, O(n5) in this case
 - Solution: Use a different decomposition (Eisner 1996)
 - Back to O(n3)
- Can play usual tricks for dynamic programming parsing
 - Further refining the constituents or spans
 - Allow prob. model to keep track of even more internal information require "outside" probabilities of constituents, spans, or links
- Training by EM etc.

DFG-Perse84 Workshop

Finding highest-scoring non-projective tree Consider the sentence "John saw Mary" (left). ■ The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree (right) - may be non-projective. Can be found in time O(n2). Every node selects best parent If cycles, contract them and repeat slide thanks to Dragomir Radev

Summing over all non-projective trees Finding highest-scoring non-projective tree How about total weight Z of all trees? How about outside probabilities or gradients? Can be found in time O(n³) by matrix determinants and inverses (Smith & Smith, 2007). slide thanks to Dragomir Radev

Future Opportunities

- Efficiently modeling more hidden structure
 - POS tags, link roles, secondary links (DAG-shaped parses)
- Beyond dependencies
 - Constituency parsing, traces, lattice parsing
- Beyond parsing
 - Alignment, translation
 - Bipartite matching and network flow
 - Joint decoding of parsing and other tasks (IE, MT, reasoning ...)
- Modeling sentence processing
 - BP is a parallel, anytime process

DFG-Perse88 Workshop

Adaptation Recipe

- Acquire (a few) trees in target domain
- Run source-domain parser on training set
- Train parser with features for:
 - Target tree alone
 - Source and target trees together
- Parse test set with:
 - Source-domain parser
 - Target-domain parser

DFG-Perseus Workshop

Why?

- Why not just modify source treebank?
- Source parser could be a black box
 - Or rule based
- Vastly shorter training times with a small target treebank
 - Linguists can quickly explore alternatives
 - Don't need dozens of rules
- · Other benefits of stacking
- And sometimes, divergence is very large

DFG-Perseus Workshop

FO

MODEL STRUCTURE

DFG-Perseus Workshop

Quasi-Synchronous Grammar

- Generative or conditional monolingual model of target language or tree
- Condition target trees on source structure
- · Applications to
 - Alignment (D. Smith & Eisner '06)
 - Question Answering (Wang, N. Smith, Mitamura '07)
 - Paraphrase (Das & N. Smith '09)
 - Translation (Gimpel & N. Smith '09)

DFG-Perseus Workshop

54

